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Abstract

The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport

(GOCART) model is used to simulate the atmospheric sulfur cycle. The model uses the

assimilated meteorological data from the Goddard Earth Observing System Data Assimilation

System (GEOS DAS). Global sulfur budgets from a 6-year simulation for SO2, sulfate,

dimethylsulfide (DMS), and methanesulfonic acid (MSA) are presented in this paper. In a

normal year without major volcanic perturbations, about 20% of the sulfate precursor emission

is from natural sources (biogenic and volcanic) and 80% is anthropogenic: the same sources

contribute 33% and 67_ respectively to the total sulfate burden. A sulfate production efficiency

of 0.41-0.42 is estimated in the model, an efficiency which is defined as a ratio of the amount of

sulfate produced to the total amount of SOe emitted and produced in the atmosphere. This

value indicates that less than half of the SO_ entering the atmosphere contributes to the sulfate

production, the rest being removed by drv and wet depositions. In a simulation for 1990, we

estimate a total sulfate production of 39 Tg S yr -_. with 36% and 64_ respectively from in-air

and in-cloud oxidation of SO2. We also demonstrate that major volcanic eruptions, such as the

Mr. Pinatubo eruption in 1991, can significantly change the sulfate formation pathways,

distributions, abundance, and lifetime. Comparison with other models shows that the

parameterizations for wet removal or wet production of sulfate are the most critical factors in

determining the burdens of SO., and sulfate. Therefore, a priority for future research should be

to reduce the large uncertainties associated with the wet physical and chemical processes.



1. Introduction

Hi,' important roles of sulfate aerosol in climate

change., atmospheric chemistry, and environmental

health have been well recognized in recent years. Sul-

tim' aerosol is one of the major aerosol types in the

troposphere with a dominant anthropogenic compo-

nent. It affects the Earth's radiative balance directly

by scattering solar radiation and indirectly by form-

ing new clouds and modifying cloud properties. It

also provides surfaces for heterogeneous reactions to

take place, thus altering the concentrations of many
important atmospheric species. Sulfate can also inter-

act with other types of aerosols, such as dust and car-

bonaceous aerosols, to modify their hygroscopic prop-

erties when internally mixed with them. The funda-

mental step toward quanti_'ing all the direct and indi-

rect effects of sulfate aerosol is determining its spatial

and temporal distributions and the various processes
that control the distributions.

There have been numerous observational data of

aerosols and their precursors obtained at ground sites,

in field campaigns, and from satellite measurements.
However. measurements at the surface or in field cam-

paigns are limited in spatial or temporal coverage,
while satellite observations are limited in measurable

quantities. Therefore, a global model is needed to in-
tegrate the space-borne, air-borne, and ground-based

data in order to interpret the data in a broader con-

text. In fact, several global models have been used to

study the tropospheric sulfur cycle since 1991 [e.g.,

Laugher and Rodhe, 1991; Pharn et al., 1995; Fe-
ichter et al., 1996; Chin et al., 1996; Chuan9 et al.,

1997: Reelers et al., 1998; Koch et al., 1999; Barth

et al., 2000: Rasch et al., 2000]. Almost all the
published global sulfur models were either driven by"

the off-line meteorological fields generated in general

ci:culation models (GCM), or were coupled on-line

with the GCM. Although these model studies have

helped to advance our understanding of tropospheric

sulfur cycle, it is often difficult for them to explain

the observed day-to-day and year-to-year variability,

let alone to interpret in-situ data from fields cam-

paigns. This is mainly because the results from the

GCY, I models in general represent multi-year values
aw,raged over a large area, which is inappropriate for

c_Jmparisons with observations in a specific time.

th,rc' we introduce the Georgia Tech/Goddard Global

()z,me Chrmistry Aerosol Radiation and Transport

((;()CART) model, which can be potentially the most
suitable _ool to link the satellite and in-qitu obser-

rations. The main advantage of the model, which
is also the main difference between this model and

the previously published models, is that the GO-

CART model is driven by the assimilated meteorolog-

ical fields, which are generated in the Goddard Earth

Observing System Data Assimilation System (GEOS

DAS). This type of model is therefore appropriate

for interpreting measurements for a specific period of

time. And because the GOCART model is a global

scale model, it is also convenient to use in analyzing

satellite data and conducting global assessments.

In this paper, we provide a detailed description of

the model components used for simulating the tropo-

spheric sulfur cycle (section 2). The global distribu-

tions and 6-year budgets for sulfate and its precursors

are presented (section 3), and the anthropogenic con-

tribution to the sulfate burden is discussed (section
5). Results from our model are compared with those

from two most recent model studies [Koch et al., 1999;

Barth et al., 2000 and Rasch et al., 2000] (section 4
and .5). A detailed evaluation of the model results

with observations and budgets for several continen-

tal and oceanic regions are presented in a companion

paper [Chin et al,, this issue]. It is noted that in addi-
tion to sulfate, other aerosol components are also sim-

ulated in the GOCART model, which include dust (P.

Ginouz et at., manuscript in preparation, 2000), car-

bonaceous, and sea salt aerosols (in progress). With

all the major aerosols simulated, we will be able to
compare the aerosol properties generated in the model

with those retrieved from the satellite measurements,

and apply the modet to global aerosol analysis.

2. Model Description

2.1. Model Framework

The GOCART model uses the GEOS DAS as-

similated meteorological data [Sch!tbert et al.. 1993].
The spatial resolution of the model is the same as
in the GEOS DAS. which has a horizontal resolution

of 2: latitude by 2.5 ° longitude. The vertical resolu-
tion varies with different versions of the GEOS DAS.

There are 20 vertical sigma levels in version 1 (GEOS-

1. available for the period of .January 19r_'30-November

1995i. extending frluu the sllrf;u> rt_ lf) mb [Allen

et al.. 1996: Chert ct al., 1995 i. In version (;EOS-

1.3 (available from April 199.5 to November 1997).

designed to supp_)vr the STIq.-kT {Stratosplmric Trac-

ers of ..\tmosph(erh" Transp,,rt) missi(m, there ato 46

v_*rti(::tl levels with ;,pprt,ximlm:tv 26 ,)f th,-nl in the

str;ttOSl)h_!rc amt the rn,,lel rop ;it I). 1 rob. [U our tro-



pospheric _imulation, we have aggregated the top 23
h'vels (from t0 mb to 0.1 rob) in the GEOS-1.3 to 3

levels and kept the lowest 23 levels (from surface to 40

rob) as the same resolution as in the GEOS-1.3 such
that the total number of model vertical levels is 26.

The lowest 5 layers in both GEOS-1 and GEOS-I.a

are centered at approximately 50,250. 600, 1100, and
1800 meters above the surface. Newer versions of the

GEOS DAS data, for example, GEOS-2 and GEOS-

3, with higher vertical or horizontal resolutions have

become available for the time periods after November
1997.

The GEOS DAS meteorological data contain not

only prognostic fields, such as horizontal winds, tem-

perature, and pressure, but also extensive diagnostic

fields, such as cloud mass flux, surface precipitation

rates, boundary layer height, and surface roughness.

Table 1 lists the GEOS DAS archived prognostic and

diagnostic fields used in our sulfur simulations.

We present in this paper a 6-year simulation from

1989 to 1994. Four sulfur species are simulated in

the model: dimethylsulfide (DMS), SO2, sulfate, and

methanesulfonic acid (MSA). There are seven mod-

ules representing atmospheric processes of these sul-
fur species: emission, chemistry, advection, convec-

tion, diffusion, dry deposition, and wet deposition.

The model solves the continuity equation using the

method of operator splitting. The model time step
is 20 minutes for advection, convection, and diffu-

sion, and 60 minutes for the other processes. The

instantaneous meteorological fields in Table 1 are lin-

early interpolated to the model time. Initialization
was done for the last 3 months of 1988, starting from

low concentrations (0.1 ppt) for all four sulfur species.

2.2. Transport

The advection and convection schemes used in

the model have been described in detail elsewhere

[Allen et aL. 199@ Here, briefly, advection is con>

puled by a flux-form semi-Lagrangian method [£in

and Rood, 1996]. Moist convection is parameterized

using archived cloud mass flux fields from the GEOS

DAS. In the previous model studies using the GEOS

DAS fields, the boundary layer mixing was param-
eterized such that a fixed fraction of material was

uniformly Inixed within the bo_lndary layer [Allen et

al., 1996: Chin et al.. 1!)981 . It was found very diffi-

cult to (:h,)ose a universal value of the mixing fraction

since it does not reflect tile boundary layer turbulence

igT_in et ,d., 19981 . In the GOCART model, the

boundary layer turbulont mixing is computed using

a second-order closure scheme [£[elfand and Labraga,

1988 I, which was also used in the GEOS DAS analysis

for heat and moisture turbulent mixing [Takacs et al.,

1994]. The scheme takes into account both growing

and decaying turbulence. The turbulent diffusion co-

efficient is a fimction of the turbulent kinetic energy,

the buoyancy and wind shear parameters.

2.3. Sulfur Emissions

The GOCART model includes emissions of DMS

from the ocean, SO., and sulfate from anthropogenic

activities, and SO2 from biomass burning, aircraft ex-
r

haust, and volcanic eruptions. Figure 1 shows an an- /Figur
nualty averaged emission flux from anthropogenic and

t.

natural sources (DMS and volcanic SO2) for 1990.

Anthropogenic emissions are taken from the Emis-

sion Database for Global Atmospheric Research (EDGAR)

for the year of 1990 [Olivier et al., 1996]. The annual

total emission rate is 72.S Tg S yr -1 which includes

emissions from industrial processes (59.3 Tg S yr-1),

residential and commercial consumptions (8.5 Tg S

yr-1), and transportation (road, rail, and shipping,

5.0 Tg S yr-t). The fraction of direct sulfate emis-
sion has been estimated from 1.4% to 5% of the total

emission [Benkovitz et al., 1996]; we assume here a
fraction of 5_ for Europe and 3_ for elsewhere. The

rest is emitted as SO__. Emission rates are assumed to

be constant throughout the year except for Europe,

where a seasonal variation is imposed such that the

emission rates are maximum in winter (30% higher

than the annual average) and minimum in summer

(30_ lower than the annual average). This seasonal
variation reflects mainly the demand for domestic

heating [Sandnes and Styve, 1992].

Emission of DY,IS from the ocean is calculated as

a product of the seawater DMS concentration and

sea-to-air transfer velocity'. Monthly averaged surface

seawater DMS concentrations in l_x i: grid resolu-

tion are taken from Kettle et al. [199@ This sea-

water DMS concentration map is generated based on

the compilation of a database of over 15,000 mea-

surements around the globe. The transfer velocity of

D.MS is computed using an empirical formula from

Liss and 5Ierlir, at [1986]. which assumes linear rela-

tionships between the transfer velocity and the 10-

meter wind speed. Diffusion of DMS within the ocean
surface water is taken into account as a function of sea

sm'fm:e temper:tture [S,dtzman et al., 199:1]. The 10-m

winds used in the model are the remote sensing data

from the Special S,msor Microwave hnager (SSM/I)
op_rated on a series _f _arcl!ites in the Defense Mete-



_¢,_to_4icalSatelliteProgram[Atla.set aL, 1996]. The

SS_I/'I winds h_lve been found to represent accurately

the local observations [Chan et al., 1998]. It has been
noted that there could be a factor of 2 or more differ-

ences in the transfer velocity calculated from different

formulae [e.g., Smethie et al., 1985; Wanninkhof et

al.. 199:2: Erickson et al., 19931, and a single param-

eterization of transfer velocity based on wind speed
alone is not sufficient to describe DY,[S flux from the

different regions of the oceans [Chin et al., 1998].

Volcanic sources of SO__ include emissions from

both continuously active and sporadically erupting
volcanoes. The continuous volcanic emissions are

taken from a database of Andres and Kasgnoc [1998].
The database includes SO.., released from 49 volcanoes

which have been continuously active over the last 25
years with an emission rate of 4.8 Tg S yr -1. We as-

sume that SO., is injected at a constant rate within

1 km above the crater altitudes. For the sporadically

erupting volcanoes, we use the volcanic database from

the Smithsonian Global Volcanism Program [Simkin

and Siebert, 1994] which has documented the loca-
tions, erupting dates and duration, and the volcanic

explosivity [aden (VEI) up to 1994. We then use the

VEI to estimate the volcanic cloud height [Sirnkin and

Siebert, 1994], and obtain the amount of SO__ emit-

ted to the atmosphere by a relationship between VEI

and SO.., flux [Schnetzler et aL. 1997]. When they
become available, satellite observed volcanic emission

data from the Total Ozone .Monitoring Spectroscopy

(TOY, IS) instrument [Bluth et aL, 1997] are used to
replace the calculated emission rates. We further

assume that SO,_ is injected within a slab which is

located at the top portion of the erupting volcanic

cloud with a thickness of 1/3 of the cloud column [L.

Glaze, personal communication, 1998]. This assump-

tion is based on the observations of plume height and

thickness after eruption [e.g., McCormick et al., 1995]
and the results from volcanic plume dispersion models

re .... Suzuki, 1983!.

Other sources of SOe in the model include biomass

burning (2.a Tg S yr -1) and aircraft emissions (0.07

Tg S yr-l). Seasonal biomass burning emissions are

fr, ml Spiro et aI. [199:2]. Aircraft emission is calcu-

l,lred based on the monthly" averaged fuel consump-

ti,_m inventory for 1992 from NASA's Atmospheric Ef-

fects of Aviation Project (AEAP), assuming an emis-

s%n imlex of 1.0. i.e.. 1 g SO._, emitted per kg fuel

t)tirm_d [ Weiseastein et al, t996]

In our 6-year simulation presented in this paper,
we have used tile same seasonal emissions from an-

thropogenic, biomass burning, aircrat't, and contin-

uously active volcanic sources for every year. The

only interannually variable sources are tim emissions

from sporadically erupting volcanoes (based on docu-

mented events) and DMS from tile ocean (due to the

change of surface wind speeds).

2.4. Chemistry

Chemical reactions included in the model are: DMS

oxidation by OH during the day to form SO2 and

MSA, and by nitrate radicals (NOn) at night to form

SO2; SO2 oxidation by OH in air and by H202 in
cloud to form sulfate. Reaction rates are taken from

DeMote et al. [1997]. The yields of SO2 and MSA
from DMS+OH reaction are assumed to be the same

as in Chin et al. [1996]. i.e., 100% SO2 from the ab-
straction channel, and 75% SO., and 25% .MSA from

the addition channel. We prescribe concentrations

of OH, NOn, and H.,O.., from the monthly averaged

fields generated in the IMAGES model [Miiller and

Brasseur, 1995]. Figure 2 plots the zonally averaged
concentrations of OH and He O.., for January and July.

A diurnal variation of OH concentrations is imposed

by scaling the average OH fields to the cosine of solar

zenith angle. Since the concentrations of NO3 over

the ocean at night are always orders of magnitude

higher than those during the day', they are assumed
to be zero in the daytime and are evenly distributed

over the night.

Because cloud water content is not available in

GEOS-1 and GEOS 1.a, we parameterize the in-cloud

oxidation of SOs by H202 as a function of cloud frac-

tion, following Chin et al. [1996]. Cloud fraction ]_

for each grid box is assumed as an empirical function
of the relative humidity in that grid box. following

Sundqvist et al, [1989]:

f_ = 1- ,/1 r-;'o
V 1 - ro

where r is the relative humidity- and r0 is tile thresh-

old relative humidity for condensation specified as a

function of pressure [.'l'u and Krueger, 1991 I. Within
the cloud fraction we assume that the formation of

sulfate is determined by the concentration of the lim-

iting reagent, i.e., the lesser amount b,_t.ween SOn

and HeO2. During the chemistry time step (?t-hour)

H:Oe is depleted as the aqueous phase reaction of

SO2+H20._, can be complete, t irJ less than one hour

[Daum et aL. 1984]. The recovery time of He()_, wines
considerably in the literature, from instantaneous re-

ph!nishm,,nt to a d,tv il, .winter [h¢_e:,;t et al.. 1999].



H_,r_wea,_sumethat H=,()._,is regeneratedto its pre-
serib_xlvalueevery3hours,similarto thetimescale
ust,x[in Chin et aI. [1996j.

2.5. Dry Deposition

Dry deposition velocities for SO.,, sulfate, and

MSA are calculated using the resistance-in-series scheme

[Wesel_ and Hicks, 1977]. In this scheme, dry depo-

sition velocities are determined as a reciprocal of the
sum of aerodynamic resistance, sub-layer resistance,

and surface resistance. The aerodynamic resistance is
taken from the GEOS DAS archive, which is a prod-

uct of the exchange coefficient for heat and moisture

and the surface friction velocity. The sub-layer and
surface resistance for SO2 and sulfate are calculated

using the formulation of Walcek et al.[1986] and We-

sely [1989]. The dry deposition velocity of MSA is
assumed to be the same as that of sulfate. We im-

pose a minimum SO2 dry deposition velocity of 0.2

cm s-1 over the ice and snow and in the polar regions

[ VoIdner et al., 1986; Tarrason and Iversen, 1998].
Typically. the diurnally averaged dry deposition ve-

locity for SO2 over the land is 0.2-0.4 cm s -_, but it

varies significantly over the ocean, from 0.6 to 0.8 cm
s -_ under stable conditions to 1 to 2 cm s -_ under

unstable conditions. For sulfate, a value of 0.08-0.12
cm s -I is found over the oceans and 0.1-0.3 over the

land except at latitudes higher than 60 ° in the win-

ter season (0.01-0.0.5 cm s-l). These values are in

general consistent with the data from limited direct

measurements and with other calculated values [e.g.,
_bldner et al., 1986; Walcek et al., 1986; Ganzeveld

et al., 1998 and references therein].

2.6. _,Vet Scavenging

Wet scavenging of soluble species in the model in-

eludes rainout (in-cloud precipitation) and washout

(below cloud precipitation) in large-scale precipita-

tion and in deep convective cloud updraft. The

GEOS DAS diagnoses the total precipitation at the

ground as an column integral of specific humidity

change due to moist processes [Takacs et al., 1994].

Here we normalize the precipitation rates from the
GEOS DAS to those from an observation based data

product, which is a merged data.set combining satel-

lite observations, ground station rain gauge measure-

ments, and the GEOS DAS precipitation fieIds [P.

Hole.set', mamlscript in preparar.ion. 2000: [I_ffraan e_

al.. 1997]. Distribution of large-scale precipitation in
a vertical column is estimated based on the specific

htunidity changes diagnosed in the GEOS DAS:

Qls
P_.,(k) = c .._X,_e(k)--

O_

where Pl_(k) is the large-scale precipitation rate at

level k, Qt._ and Q_ are respectively the column inte-

grated specific humidity change due to large-scale or

total (large-scale and convective) moist process, c is

the ratio of the precipitation rate in the merged prod-

uct to that in the GEOS DAS, and ..Sqt(k) is the total

specific humidity change at level k where a negative

value indicates a precipitation and a positive value

implies an evaporation.

Removal of sulfate and MSA by large-scale rain is

calculated as a first-order loss process using parame-

ters of Giorgi and Chameides [1986]. The change of

aerosol mixing ratio within a model time step is:

A)((k) = _(k)f(k)(e -3(_)-xt - 1)

where X(k) is the mixing ratio at level k, f(k) is the

fraction of the grid box experiencing precipitation,
3(k) is the frequency of cloud to rain conversion, and

'Xt is the duration of precipitation, which is equal to

the wet scavenging time step for large-scale rain. The

values of f(k) and 3(k) are defined by" the precipita-

tion amount at each grid box and by a typical liquid

water content for large-scale precipitation [Giorgi and

Chameide.s, 1986].

Washout between the cloud layers or below the

lowest cloud level is also computed as a first-order
loss process, similar to the treatment of rainout. In

this case, the fraction of a grid box with precipita-

tion is determined by the largest value of f from the

overhead rainy grid box, and 3 is assumed to be 0.1

mm -1 normalized to the precipitation rate [Dana and

Hales, 1976]. A fraction of soluble species between or

below clouds releases into the grid box if evaporation

(_Xq_ > 0) occurs. This fraction is assumed to be the

same as that of evaporated water.

It has been found in previous model investigations

as well as in field studies that soluble species are scav-

enged emciently within the convective cloud updraft

[BaNan.ski et at.. 1993: Cohan et _[.. 1999]. Adapting

the principle of B_llkansk_ et al. !1993 i. w,_ couple the

conve_ctive scavenging with the moist convection pro-

cess in our model, and use a scavenging efficien,'v of
0.1 kin- t for soluble aerosol species.

We use the same method for SO._, wet scavenging

as that described in Chin et al. [!.996]: we define a
soluble fritcth)El t)f S(), its limited by the availability of



H-().)in thet)r,,(:ipitatiuggridbox.andscavengethe
solubleSO,,at thesamerateassulfate.Whenevap-
ot'a_ion occurs, a fraction ,)t"dissolved SO_ returns to

tiu, grid box as sulfate.

3. Global Budget and Distributions

3.1. Summary of Global Budget

Summary of a 6-year budget of 1989-1994 is pre-

sented in Figure 3. Before we discuss the budget,

we shall clarify the terms used in our wet removal

and aqueous-phase oxidation budgets, since they can
sometimes cause confusion. Here, the term "wet scav-

enging" refers to the loss of a particular tracer in the

wet process described in section 2.6 regardless of its
transformation within the rain water. With that in

mind, we count the amount of SO2 scavenged and
subsequently converted to sulfate in the rain water as

a term of wet scavenging of SO2, not sulfate. And we

do not record this amount as a part of "in-cloud sul-

fate production" (except for the fraction returned to
the atmosphere during the evaporation of raindrops),

because the production of sulfate from the dissolved

SO., in rainwater does not contribute to either the

sulfate burden in the atmosphere or the removal of

sulfate from the atmosphere. While it seems just a

labeling issue for the sulfur budget, counting the wet

scavenging of SO2 as a loss of sulfate can lead to an
underestimation of atmospheric sulfate lifetime, since

the lifetime is simply the ratio of atmospheric burden
to the loss rate.

As shown in Figure 3, the anthropogenic emission

is 75 Tg S yr -1, which includes emissions from indus-
trial activities, fuel combustion, ship, and aircraft,

as well as from biomass burning. Biogenic emission

of DMS from the ocean ,_aries from 13.3 to 15.0 Tg
S yr -l, reflecting the changes in the surface wind

speeds. Volcanic emissions are also fairly constant

from year to 3"ear (5.4-6.0 Tg S yr-:), except 1991

wimn a major volcanic eruption of Mt. Pinatubo oc-

curred in .June. injecting about 10 Tg S (or 20 Mton

SO..,) into the atmosphere. Total volcanic emission for

1991 is 19.6 Tg S vr -t. In a normal year (e.g., with-

out major volcanic eruptions), the fraction of sulfur

emitted fi'om natural sources (biogenic and volcanic)
is about 20_{ of the total emission of 94 Tg S vr-:.

In-cloud oxidation of SO, is responsible for about

6-l'/. of total sulfate production in a normal 5"ear. while
in-air oxidation accounts f,_r tim rest 36'7:_. [n con-

rrast, less than half of the sulfate pruduction in 1991
takes place in-cloud, because the Pinatubo eruption

in.j,wts most SO- into the stratosphere where the gas-

phase reaction with OH is the onh" mechanism in

the model to convert SOe to sulfate. Dry deposition

and wet scavenging remove roughly the same amount

of sulfur from the atmosphere (4.5-55 Tg S yr-:).

While dry deposition is the most important loss of

SO2 (45%) followed by in-cloud oxidation (27%), wet

scavenging eliminates 90% of sulfate produced in the

atmosphere. The lifetime is 1.8 days for SOn and 5.8

days for sulfate in a normal year.

The annually averaged atmospheric burden for SO.o

is 0.42-0.48 Tg S except 1991. The SO2 burden is 1.6

Tg S in 1991, with most of it residing in the strato-

sphere, i.e., above 100-120 mb in the model (Fig-

ure 3). While SO2 returns to its normal level rather

quickly after the Pinatubo eruption (e-folding time

about 1 month), it takes much longer for sulfate to

relax back to its normal level. As illustrated in Fig-
ure 3, three )'ears after the Pinatubo eruption, total

sulfate burden in 1994 (0.98 Tg S) is still significantly

higher than its pre-Pinatubo value in 1989-1990 (0.63

:rg S).

The only removal process for DMS is its oxida-
tion in the atmosphere. Globally, nearly 90% of DMS

emitted from the ocean is oxidized by OH during the

day: only 10% is lost at night via reaction with NOn.

The stable products from DMS oxidation are 89%
SOe, which can be further oxidized to sulfate, and

11% MSA, which is removed by wet (91%) and dry

(9c'/c) depositions. The atmospheric burden for DMS

is 0.072-0.080 Tg S, and that for ._[SA is 0.027-0.032

Tg S. The lifetime is 1.9-2.2 days for DMS and 6.8-7.2
days for MSA.

We define a term of the sulfate production effi-

ciency as the amount of sulfate produced relative to
the total amount of SO,., emitted and produced in

the atmosphere. The sulfate production efficiency is

a direct measure of the effectiveness of SO2 oxida-

tion versus the dry and wet removal of SOe. We find

in our model a typical production efficiency value of

0.41-0.42, which indicates that only less than half of

the SO._, contributes to sulfate production in the atmo-

sphere, and the rest is mainly deposited to the surface.

In the Pinatubo eruption }'ear of 1991. however, the

sulfate production efficiency increases to I). 19. reflect-

ing that the SO-, released at high altitu_[_,s produces
sulfate much more effectively than that emitted near

the surface.



3.2. Global Distributions

To presentsome general features simulated in the

model, we plot in Figure 4 global distributions of SO._,,

sulfate, DMS, and MSA at the surface (Figure 4a) and

at 500 mb (Figure 4b) for the pre-Pinatubo year of

1990. Concentrations shown in Figure 4 are average

values for 2 seasons: December. January, February

(DJF), and June, .July, August (JJA). High surface

concentrations of SOe and sulfate are found in regions

of high anthropogenic emissions for both seasons, as
expected. The major contrast between DJF and JJA

is the strong advection of pollutants from the mid-

latitude source regions to the Arctic circle in DJF.
While SO2 concentrations are higher in the winter

than in the summer, the reverse is true for sulfate,

because of the seasonal variation of SO2 oxidation

rates. Globally, the sulfate production efficiency in

January is only 0.27 whereas in July it is 0.48 in 1990.

The distribution of DMS at the surface closely re-

sembles that in seawater. Very high surface air con-

centrations of DMS (500-2000 ppt) are produced in
the model near 60 ° latitude in the summer hemi-

sphere. These elevated concentrations are directly
related to the high DMS emission flux (10-50 #mol

m -e day-l), a product of very high seawater DMS

concentrations and strong surface winds. While the
surface DMS concentrations at these latitudes in sum-

mer seem too high compared with some measure-

ments near the Antarctic coast (< 800 ppt. Staubes

and Georgii, 1993: Berresheim et al., 1998), the
model calculated concentrations of the DMS oxida-

tion products, sulfate and MSA, at high latitude sites

(e.g., Palmer Station and Mawson in Antarctica, and

Haemey in Iceland) agree with the observations to

within 40% [Chin et al., this issue]. This apparent in-
consistency needs to be fflrther investigated. Finally,

as expected. MSA surface distribution is similar to
that of DMS.

One common feature for all sulfur species at 500

mb (Figure 4b) is that they are better mixed zon-

ally and the concentrations are 1 to 2 magnitudes

lower than that at the surface, reflecting their rela-

tively short lifetimes (several days). DMS concentra-

tions at 500 mb are higher in the winter hemisphere

than in the summer hemisphere, opposite to the pat-
tern found at the surface. This is because the slow

oxidation rates of DMS in winter alIow D3IS to be

transported to higher altitudes. On the'other hand,

th_ DY,[S loss rates are higher in summer than [n win-

ter din__ to the higher OH concentratiotls: thus only
;l small fraction of D.MS escapes fr,)m the bolmdary

laver in summer despite the highor emission rates.

The anntmlly averaged zonal mean distributions

of SO.,. sulfate, DMS. and MSA for 1990 are shown

in Figure 5. As expected, both SO_ and sulfate ex-

hibit high concentrations in the northern hemisphere.

In the tropics. DMS is pumped to the upper tropo-

sphere by the deep convective process. Interestingly,

the same process is also responsible for the low sul-

fate concentration in the middle to upper troposphere

over the tropics, thanks to the efficient wet scaveng-

ing of sulfate in cloud convection. This feature also

appeared in the model simulations of Feichter et al.

[1996] and Koch et al. [1999], but was lacking in some

other models (e.g., Chin et al., 1996; Barth et al.,

1999), depending on the convective process in the me-

teorological data and the efficiency of in-cloud scav-

enging in different models.

We plot in Figure 6 the column total sulfate sources
and sinks in the 1990 simulation as a function of lat-

itude. It can be seen that in-cloud oxidation of SO__

is the most important source of sulfate, especially

at high latitudes (60°N and higher in the northern

hemisphere, and between 40°S and 70°S in the south-

ern hemisphere), where in-cloud oxidation contributes

80-90% of the total sulfate source. While scaveng-

ing by large-scale rain dominates the sulfate loss over

mid- and high latitudes, wet convective scavenging
dominates over the tropics and subtropics. Dry depo-

sition in general accounts for less than 20c7c of sulfate

loss at all latitudes except in the polar regions.

4. Comparisons with Other Global
Model Studies

\Ve focus here on the comparison of sulfur budget
in the GOCART model simulation for 1990 with two

of the most recent global model studies: Koch etal.

[1999], using the Goddard Institute for Space Studies'

general circulation model version II' [GISS GCM),

and Barth et a/.[20001 and Rasch et al. [2000 ], us-

ing the NCAR Community Climate Model (NCAR

CCM3). Intercomparisons involving other earlier

models (e.g.. Langner and Rodhe. 1991: Pham et al.,
199.5; Feichter et al.. 1996: Chin et al.. 1996) have

been presented in previ.us model studi_:s [Chin et al..

1996: Koch et al.. 1999: Ra.s(:,_ etal.. 2000! and will
not be discussed in detail here. We will only summa-

rize the maj,_r diff,:fences be:wee.n this .-:tudv and an

earlier work [(7_i,. eta[.. 1996!.

Table' 2 sulntv.ariz,?s the. comtmrison of sulfur bud-

gets among t}m GOCART. (;lSS. an,t NCAR rood-

[Figu:

[Figu:

[Tabl,



_'Is. (.),it total mnission (93.9 Tg S yr -L) is higher

rhau that in both G[SS and NCAR models (83 TZ S

vr-'}. This is because we use the EDG.\R database

of 1990 embsion inventory (72.8 TZ S yr -t ) which also

includes emissions from shipping and landuse_ while
the GISS and NCAR models use the GEIA emission

inventory (67 Tg S yr -1) for the 1985 emission sce-

nario [Benkovitz et aL, 1996]. The biomass burning
emission in our model is the same as that in the GISS

model (2.3 Tg S yr-r), but the volcanic emission (5.5

Tg S vr -I) is much higher than that in the GISS

model (3.5 Tg S yr-1), because we include emissions

from both continuously active and sporadically erupt-

ing volcanoes, while Koch et al. [1999] considers only

non-eruptive volcanoes. Volcanic and biomass burn-

ing emissions are not included in the N'CAR model.

Emission of DMS calculated in our model is 13.3 Tg
S yr -1 for 1990, about 30% higher than that in the

GISS model (10.7 Tg S yr-1), even though both mo-

dies use the same formula for transfer velocity and
the same DMS seawater concentrations in calculat-

ing DMS emission rates. This difference may be at-
tributed to the lower 10-meter wind speeds in the
GISS GCM. The NCAR model calculates a total DMS

emission of 15,5 Tg S vr -l, based on the latitudinal

bands of DMS flux in Bates et aL [1992] and the

distribution of the ocean color in the remote sensing
products.

Our model estimates an equal amount of sulfur be-

ing removed by dry deposition and wet scavenging
{507{ for each process), while a slightly higher frac-

tion of dry deposition (54_ dry, 46% wet) is obtained
in the GISS model and the wet removal is about twice

as effective as dry deposition in the NCAR model.

Total sulfate production from SO,., oxidation is 38.5

Tg S yr -1 in our model. Although this value is the

lowest among the three models, remember that we do

not count the SO2 loss in wet scavenging as a part of

sulfate production while both the GISS and NCAR

m,),lels do. As we stated in the previous section, even

though the amount of SO2 scavenged by the rain is

subsecluently converted to sulfate in rainwater, this
process does not play a role in determining the at-

mospheric sulfate concentration or removal: we thus

consid,.'r the in-rain sulfate production as ineffective.

Stl_m/d ,.re include the SO_ wet scavenging as a part

of sulfate production, the value would be. 49.1 Tg S

yr-t which is between the GISS and NCAR model.

.\s w,, havo shown in the previous section, 89%

of the D.',[S emitted front the oc_an produces SO..,

(I1.9 Tg S yr-L). Of this amount, 87% is produced

via DMS+OII and 13'.>_, via DMS+N():;. The SO..,

production is more effident in the G [SS model (93%),

whereas the NCAR model assumes SO., as the only
DMS oxidation product.

The GISS model has the highest SO.., and sulfate

burden among the three models, which was attributed

to the use of prognostic HeOe and an insufficient en-

trainment of H202 from the cloud base to oxidize SOa

in highly" polluted regions [Koch et al.. 1999]. On the

other hand, the NCAR model also uses prognostic

H202 but shows the lowest SO,, and sulfate burden.

The cause of the discrepancy is likely a combination

of the differences in cloud processing, oxidant concen-

trations, precipitation rates, among others, between
the models. The DMS burden and lifetime in our

model is 22% and 41_ higher than those in the NCAR

model, even though both models have used the same

prescribed OH and NO3 fields for DMS oxidation.
Possible explanations include the difference in DMS

emission rates, which are higher in our model at high
latitudes where DMS oxidation is slower. The life-

time of DMS in the GISS model is very close to that

in our model, although the DMS burden is lower in

the GISS model, probably due to the lower emission
rates.

The lifetime of 2.6 days for SO2 in the GISS model

is about 40% longer than the ones in both our model

(1.8 days) and the NCAR model (1.9 days), reflect-

ing a slower removal rate in the GISS model. Re-

garding the lifetime of sulfate, we estimate a value

of .5.8 days with respect to the sulfate dry deposition
and wet scavenging. If we had included the amount

of S02 lost by wet scavenging as a sink of sulfate,

as the GISS and NCAR models have, then the sul-

fate lifetime in our model would be 4.6 days, which

is lower than the GISS model but higher than the
NCAR model. The point we try to make here is that

the atmospheric sulfate residence time is underesti-

mated when wet scavenging of S02 is included as a
loss term of sulfate. The lifetime of DMS is similar to

that in the GISS model but higher than that in the

NCAR model, whereas ehe lifetime of MSA is slightly
lower than that in the GISS model (MSA is not sim-

ulated in the NCAR model).

To examine the differences between the models in

loss rates for indivhtua[ sinks, v,-e fist in Table 2 the

loss frequencies for each process, defined as the SOe

or sulfate atrn,)spheric burden divided by" their indi-

vidual removal rares. While dry removal pn)c_'sses

for SO.., (dry dc.positi_m and in-air oxidati,m) are the

II_<_st ef_<ient in oLlr n_odel, ,,rot process_.s (;lqueous
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phase pr,)_luction and wet renloval/ aro the most ef-
fective in the NCAR model but the least effective in

the GISS model. The effectiveness of the wet process

is almost inversely proportional to the SO2 and sul-

fate burden, which are the lowest in the NCAR model

and highest in the GISS model. For example, a ratio
of the sulfate burden between the GOCART, GISS,

and NCAR models are 1:1.3:0.9, that of the SO., bur-

den is 1:1.2:0.9, which is also the ratio of the inverse

of the total sulfur wet deposition rate. Interestingly,

the sulfate burden is also inversely proportional to the

wet production rate of sulfate (in-cloud and in-rain);
a ratio of 1:1.1:0.9 is found between the three models.

These linear relations clearly confirm the importance

of the wet processes in determining the sulfur bur-

den in the atmosphere. Therefore, emphasis should

be given to improving the wet physical and chemi-

cal processes and validating the parameters used in

modeling these processes, such as cloud distribution,

cloud fractions, precipitation amount, scavenging ef-
ficiencies, and the aqueous phase oxidation rates.

Comparing our zonally averaged concentrations of

SO2, sulfate, and DMS in Figure 5 with those re-

ported in Koch et al. [1999] and Barth et al. [2000],
we find that the SO._ concentrations in the GISS

model are significantly higher than that in both the

NCAR and our model in the lower troposphere. For

example, a 500 ppt SOe contour in the GISS model
reached 700 mb and extended from 27"'N to 75°N,
while this contour line is confined below 8,50 mb and

at the latitudes between 25°N and 60°N in both the
NCAR and our models. A similar difference in sulfate

distribution is also found. Our extratropical DMS

zonal distribution resembles that in the GISS model

with a symmetric distribution between the northern

and southern hemispheres. However, in the tropi-

cal upper troposphere, there is a second maximum of
DMS in our model with a concentration of ,5-10 ppt,

a feature which is very similar to the NCAR model
but not obvious in the GISS model.

The results from the GOCART model differ from

that in Chin et al. [1996](using the Harvard/GISS

GCM II model) in a number of ways. The ma-

jor difference is in the sulfate vertical distributions.

The zonally averaged sulfate distribution in Figure 5

shows a much less vertical gradient than that in Chin

et d. {1996]. The difference is attributed mainly
to a nmch more efficient wet scavenging in Chin et

al [t996]. partly due to the excessive wet convection

over some regions, and partly due to the higher wet

scavenging efficiency (100_ in deep wet convection).

l'h_, other differem'_ is in D.kIS oxidation. Chin et al.

[1996] found that an oxidant in addition to OH and

NOa was needed fl)r DMS oxidation in order to repro-
duce both DMS and sulfate concentrations observed

over the remote ocean surface. We do not invoke such

an oxidant in this study, and our simulated concen-

trations for all sulfur species are overall consistent

with the observations over the oceans [Chin et al.,

this issue]. \\_ attribute this difference to the bet-

ter parameters in calculating the DMS emission rates

and the higher (a factor of 2 to 3) OH concentrations

over the ocean surface (a factor of 2 to 3) used in this

study than those used in Chin et al. [1996].

5. Anthropogenic Contributions

We have conducted a model simulation for 1990

without anthropogenic emissions in order to estimate

the relative importance of natural and anthropogenic

sources to the atmospheric sulfate loading. The total

emission for this case is 18.8 Tg S vr -t, which in-

cludes only" the DMS and volcanic SO_o sources. The

annually averaged column sulfate burden and the an-

thropogenie contributions for 1990 are shown in Fig-

ure 7. The anthropogenic fraction of sulfate is more
than 60% in the northern hemisphere, with more than

80% over the United States and the Eurasian conti-

nent. A more widely spread anthropogenic influence

over the northern hemisphere is found in the GISS

[Koch et al.. 1999] and NCAR [Rasch et al., 2000]
models, with more than 80% anthropogenic sulfate
over the entire area at latitudes north of 10°N. In

the southern hemisphere, the anthropogenic fraction

is generally 20-40% over the ocean in our model (Fig-

ure 8). similar to the GISS and NCAR models.

We find that anthropogenic sources contribute to

67% of the total sulfate burden in 1990. a fraction

which is somewhat lower than the anthropogenic sul-

fur emission fraction of 80_. Figure 8 shows the

percentage of zonally" averaged anthropogenic contri-
bution for two seasons. DJF and JJA, in 1990. As

can be seen in Figure 3. the anthropogenic sulfate
dominates the sulfate burdens in the northern hemi-

sphere but with distinct patterns between D.JF and

.IJA. It disperses horizontally in D.IF with the 80_
COiltoltrlino stretched out to the northern polar re-

gion but confinetl below 600 rob. Bv contrast, the

anthropogenic sulfate is well mi:o'd vertically by the

frequent con,.,.'ctiw_ activities in .IJY, wit}, the 80'7c

colatour line _,xtended to the tropopause. Of inter-

est is that the anthropogenic contribution increases

[Figm



withtheaititmh.'overthemid-tohighlatitudein the
so_Lthernhemisphere,resultingfrom theinterhemi-
spherictransportfi'omthenorthernhemisphereand
theconvecth-etransportfromthemid-latitudes.

Whencomparingthe naturalsulfurbudgetwith
that in theGISSmodel[Kochet al., 1999], a major

disagreement lies in the lifetimes of SO._ and sulfate.
While in the GISS model the SO_ lifetime from a

natural-source-only run (1.8 days) was shorter than

that from a full run (2.6 days), we find that the reverse

is the case in our model: 2.4 day's in the natural-

source-only run and 1.8 days in the full run. As for

sulfate, the lifetime stayed the same in both natural
and full simulations in the GISS model, but in our

model it is longer from the natural simulation (7.2

days) than that from the full simulation (8.8 days).

It is expected that SO., and sulfate of natural origin

should have a longer lifetime than the anthropogenic
ones, because they are not as concentrated near the

surface, thus not subject to the fast removal by dry

and wet depositions.

The anthropogenic contribution to the atmospheric
sulfate burden from this study, as well as from the

GISS and NCAR models, is significantly higher than

that reported by Chin and Jacob [1996]. The lat-
ter stud}" found that the anthropogenie sources con-

tributed to only 37_ of the sulfate burden, although
they accounted for 70c'/c of the total sulfur emission.

This is due to the high sulfate production rates from

DMS oxidation and more excessive wet scavenging

near the mid-latitude continents in Chin et al. [1996]
than those in this study.

6. Conclusions

We have used the GOCART model to simulate the

tropospheric sulfur cycle. The model uses the assimi-

lated meteorological fields from the GEOS DAS. mak-

ing it potentially the best tool to link the satellite and

in-situ observations for global analysis. We have in-

corporated in the model the most updated emission

inventories of anthropogenic, biogenic, and volcanic

sources for DMS and SO.,. In a typical year with-

out major volcanic eruptions, we estimate that about

2uc_ of the suffate precursor emission is from natural
sources (biogenic attd volcanic) while 80_ is anthro-

pogenic, in-air and in-cloud oxidation of SO_ account

for 36'7{ and 64'_ respectively of the atmospheric sul-

f_,_e pro, luc_ion. We have estimated a sulfate pro-

_luction efficiency as a ratio of the amount of sulfate

produced to the total amount of SO._, emitted and pro-

l0

duced in the atmosphere. A typical production effi-

ciency value of 0.41-0.-12 is found, b_cticating that gen-

erally more than half of the SO: entering the atmo-

sphere does not contribute to the sulfate production

but is either removed bv dry deposition or scavenged
by the rain. We have reported that in 1990 the atmo-

spheric burdens for SOe. sulfate. DMS. and MSA are

0.43.0.63, 0.073, and 0.025 Tg S, respectively, with

the corresponding lifetimes of 1.8. 5.8. 2.0. and 7.1

days.

The anthropogenic contribution to the atmospheric
sulfate burden is estimated at 67% for 1990, a fraction

which is somewhat smaller than that of anthropogenic

emission (80%). While it is horizontally spreading
out to the northern polar region in DJF, the anthro-

pogenic contribution is vertically well mixed in aaa,
with the 80% contour line extended to the tropopause

over the mid-latitudes in the northern hemisphere.

We have also shown that major volcanic eruptions can

significantly change the sulfate formation pathways,
distributions, abundance, and lifetime. These effects

are seen in our model simulations from 1989 to 1994,

a period which includes the major volcanic eruption
of Nit. Pinatubo in 1991. It has been demonstrated

that while SO2 returns to its normal level in only
a few months after the Pinatubo eruption, it takes

several years for sulfate to relax back to its normal

atmospheric loading.

Our model results of 1990 have been compared

with two most recent model studies, namely the GISS

model [Koch et al., 1999 ] and the NCAR model

[Barth e_ al., 2000: Rasch et al., 2000]. While the an-

nual DMS burden in our model is 20-30% larger than
the other two models, our SO_ and sulfate burdens are

lower than those in the GISS model but higher than
those in the NCAR model. The relative abundance of

the SOe and sulfate burden is almost inversely propor-
tional to the rate of wet removal and the rate of wet

production of sulfate. This proportionality shows the

magnitude of the wet processes in controlling the at-

mospheric sulfur burden. Therefore, the first priority

in future research should be to reduce the large uncer-

tainties associated with the wet physical and chemical

processes.
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Figure 1. Annual emissions (mg S m -e yr -l) of 1990 for sulfate precursors from anthropogenic and natural

(o(:_'anic and volcanic) sources used in the model.

Figure 2. Zonal averaged distributions of OH and H20,_, for January and July from the IMAGES model [Miiller

and Brasseur, 1995].

Figure 3. Summary of a 6-year sulfur budget (1989-1994) in the GOCART model. Troposphere and stratosphere
interface at 120-100 mb.

Figure 4. Distributions of sulfur species (ppt) in for DJF and JJ._ in 1990 at (a) the surface and (b) 500 rob.

Figure 5. Zonal distributions of sulfur species (ppt) in the simulation for 1990.

Figure 6. Sources and sinks for sulfate in the 1990 simulation as a function of latitude.

Figure 7. Total sulfate column burden (rag S m -2) and the anthropogenic fraction in the 1990 simulation.

Figure 8. Zonally averaged anthropogenic sulfate fraction in DJF and JJA for 1990.



Table 1. GEOS-DASmeteorologicalfiehlsusedin
(_;()CART

GEOS-DASfields

Prognostic fields (instantaneousvalue,
every6 hours):

Surfacepressure
Temperature
Windvelocity
Specifichumidity
Surfacealbedo
Surfacetype(land,water,or ice)

Diagnostic fields (averagevalue,every
3 or 6 hours):

Cloud mass flux

Convective cloud detrainment

Cloud fraction (column)

Specific humidity change

Total precipitation at the surface

Convective precipitation at the surface

Aerodynamic resistance
Surface friction velocity

Surface roughness length

Surface air temperature
Surface sensible heat flux

Boundary layer depth

Wind velocity at 10 m
Turbulent diffusion coefficient a

Net shortwave radiation at the surface

15

aTurbulent diffusion coefficients were not archived in

the earlier version of GEOS-DAS (before 1997). They
have been calculated using t,ge archived GEOS DAS fields
for simulations before 1997.



Table '2.

Models.
Comparison of Sulfur Budget from the GOCART Model with The GISS and NCAR

16

Budget Component GOCART '_ GISS b NCAR c

Total emission (Tg S yr -I) 93.9 83.0

SO2 anthropogenic 70.6 (75.2%) 64.6 (77.8%)

SOs biomass burning 2.3 (2.4%) 2.3 (2.8%)

SO2 volcanic 5.5 (5.9%) 3.5 (4.2%)

Sulfate anthropogenic 2.2 (2.3%) 1.9 (2.3%)

DMS oceanic 13.3 (14.2%) 10.7 (12.9%)

Total deposition (Tg S yr -t) 93.0

SO._, dry deposition 41.2

SOe wet scavenging 10.6

Sulfate dry deposition 5.1

Sulfate wet scavenging d 34.7
MSA dry deposition 0.1

.MSA wet scavenging 1.3

SO., production (Tg S yr -1) 11.9
From DMS+OH 10.4

From DMS+NOa 1.5

Sulfate production (Tg S yr -1) 38.5
In-air 14.0
In-cloud d 24.5

83.4

(44.3%) 35.5 (42.6%)

(11.4%) 0.2 (0.2%)

(5.5%) 9.2 (11.0%)

37.3%) 37.4 (44.8%)
(0.1%) 0.2 (0.2%)

(1.4%) 0.9 (1.1%)

(87.4%)
(12.6%)

10.0

44.7

(36.4%) 3.1 (29.3%)

(63.6%) 31.6 (70.7%)

Burden (Tg S)
SO_, 0.43 0.56
Sulfate 0.63 0.73

DMS 0.073 0.056

MSA 0.028 0.023

Lifetime (days)

SOs . 1.8
Sulfate e 5.8

D.XIS 2.0
X[SA 7.1

Loss ffequencyr(day -t)

SO2 dry deposition

SO._, in-air oxidation

SOe in-cloud oxid.+wet scav.

Sulfate dry deposition

Sulfate wet scavenging

(4.6)

(0.2)

0.26

0.09

0.22

0.02

0.15

2.6

5.7

1.9

7.6

0.17

0.06

0.15

0.03

0.14

82.5

65.7

15.5

81.0
24.5

1.6

3.7

51.2

15.5

53.6

9.2
4.4

0.4

0.57

0.06

1.9

4.0

1.4

0.17

0.06

0.31

0.02
0.25

(79.6%)

(18.8%)

(30.2%)

(2.0%)

(4.6%)

(63.2%)

(17.2%)
(82.8%)

'This work, 1990 simulation.

_'Aoch et al., [1999].



':B,,,-_.h_._,,Z.,[_000];n_ch _t ,,_.,[2ooo].

dso_ wet scavenging is counted as a part of sulfate in-cloud production and sulfate wet scavenging in the

GISS and NCAR model. See text for details.

eThe numbers in parentheses for the GOCART model are the values that would be if SO2 wet scavenging

were considered as a part of sulfate wet deposition term, as treated by the GISS and NCAR models. See

text for explanation.

fLoss frequency is defined as the loss rate divided by the burden.
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